374 research outputs found

    QCD Corrections to Radiative B Decays in the MSSM with Minimal Flavor Violation

    Get PDF
    We compute the complete supersymmetric QCD corrections to the Wilson coefficients of the magnetic and chromomagnetic operators, relevant in the calculation of b -> s gamma decays, in the MSSM with Minimal Flavor Violation. We investigate the numerical impact of the new results for different choices of the MSSM parameters and of the scale where the quark and squark mass matrices are assumed to be aligned. We find that the corrections can be important when the superpartners are relatively light, and that they depend sizeably on the scale of alignment. Finally, we discuss how our calculation can be employed when the scale of alignment is far from the weak scale.Comment: 16 pages, 5 figures; v2: version to appear in Phys. Lett.

    On the NLO QCD corrections to Higgs production and decay in the MSSM

    Full text link
    We present explicit analytic results for the two-loop top/stop/gluino contributions to the cross section for the production of CP-even Higgs bosons via gluon fusion in the MSSM, under the approximation of neglecting the Higgs boson mass with respect to the masses of the particles circulating in the loops. The results are obtained employing the low-energy theorem for Higgs interactions adapted to the case of particle mixing. We discuss the validity of the approximation used by computing the first-order correction in an expansion in powers of the Higgs boson mass. We find that, for the lightest CP-even Higgs boson, the gluino contribution is very well approximated by the result obtained in the limit of vanishing Higgs mass. As a byproduct of our calculation, we provide results for the two-loop QCD contributions to the photonic Higgs decay.Comment: 24 pages, 4 figures; v2 to appear in Nucl.Phys.B; v3 minor corrections, note added in section 3.

    QCD Corrections in two-Higgs-doublet extensions of the Standard Model with Minimal Flavor Violation

    Full text link
    We present the QCD corrections to R_b and to the Delta B=1 effective Hamiltonian in models with a second Higgs field that couples to the quarks respecting the criterion of Minimal Flavor Violation, thus belonging either to the (1,2)_1/2 or to the (8,2)_1/2 representation of SU(3)xSU(2)xU(1). After the inclusion of the QCD corrections, the prediction for R_b becomes practically insensitive to the choice of renormalization scheme for the top mass, which for the type-I and type-II models translates in a more robust lower bound on tan(beta). The QCD-corrected determinations of Rb and BR(B->Xs gamma) are used to discuss the constraints on the couplings of a (colored) charged Higgs boson to top and bottom quarks.Comment: 19 pages, 7 figures. v2: version published in Phys. Rev. D, with additional reference and not

    Towards precise predictions for Higgs-boson production in the MSSM

    Get PDF
    We study the production of scalar and pseudoscalar Higgs bosons via gluon fusion and bottom-quark annihilation in the MSSM. Relying on the NNLO-QCD calculation implemented in the public code SusHi, we provide precise predictions for the Higgs-production cross section in six benchmark scenarios compatible with the LHC searches. We also provide a detailed discussion of the sources of theoretical uncertainty in our calculation. We examine the dependence of the cross section on the renormalization and factorization scales, on the precise definition of the Higgs-bottom coupling and on the choice of PDFs, as well as the uncertainties associated to our incomplete knowledge of the SUSY contributions through NNLO. In particular, a potentially large uncertainty originates from uncomputed higher-order QCD corrections to the bottom-quark contributions to gluon fusion.Comment: 62 pages, 24 pdf figures; v2: minor clarifications, improved plot quality, matches published versio

    Two-loop QCD corrections to the MSSM Higgs masses beyond the effective-potential approximation

    Full text link
    We compute the two-loop QCD corrections to the neutral Higgs-boson masses in the MSSM, including the effect of non-vanishing external momenta in the self-energies. We obtain corrections of O(alpha_t*alpha_s) and O(alpha*alpha_s), i.e., all two-loop corrections that involve the strong gauge coupling when the only non-vanishing Yukawa coupling is the top one. We adopt either the DRbar renormalization scheme or a mixed OS-DRbar scheme where the top/stop parameters are renormalized on-shell. We compare our results with those of earlier calculations, pointing out an inconsistency in a recent result obtained in the mixed OS-DRbar scheme. The numerical impact of the new corrections on the prediction for the lightest-scalar mass is moderate, but already comparable to the accuracy of the Higgs-mass measurement at the LHC.Comment: 22 pages, 5 pdf figures; v2: version to appear in EPJ

    Politics of meaning in categorizing innovation : how chefs advanced molecular gastronomy by resisting the label

    Get PDF
    This study examines innovators’ efforts to conceptualize and communicate their novel work through categorization. Specifically, we view category formation as a controversial process of meaning making, which we theorize through the concept of ‘politics of meaning’ and operationalize through a social semiotics approach. By analyzing the labelling controversies underlying a new culinary style publicized as ‘molecular gastronomy’, we find that innovators’ efforts at categorization unfold along four consecutive stages: experiment ng with a new style, communicating the new style, contesting the dominant label, and legitimating the category meaning. Our study suggests that a new category’s dominant label can substantially deviate from the innovators’ intended denotations, yet nonetheless bring that category forward by triggering public negotiations around its meaning , which lead to categorical deepening and legitimation. By putting forward a ‘politics of meaning’ view on categorizing innovation, this work advances our understanding of the connection between labeling and category formation in the context of innovation

    Towards high-precision predictions for the MSSM Higgs sector

    Get PDF
    The status of the evaluation of the MSSM Higgs sector is reviewed. The phenomenological impact of recently obtained corrections is discussed. In particular it is shown that the upper bound on mh within the MSSM is shifted upwards. Consequently, lower limits on tanb obtained by confronting the upper bound as function of tanb with the lower bound on mh from Higgs searches are significantly weakened. Furthermore, th e region in the MA-tanb-plane where the coupling of the lightest Higgs boson to down-type fermions is suppressed is modified. The presently not calculated higher-order corrections to the Higgs-boson mass matrix are estimated to shift the mass of the lightest Higgs boson by up to 3 GeV

    Precise determination of the neutral Higgs boson masses in the MSSM

    Get PDF
    We present the implementation of the radiative corrections of the Higgs sector in three public computer codes for the evaluation of the particle spectrum in the Minimal Supersymmetric Standard Model, Softsusy, Spheno and SuSpect. We incorporate the full one-loop corrections to the Higgs boson masses and the electroweak symmetry breaking conditions, as well as the two-loop corrections controlled by the strong gauge coupling and the Yukawa couplings of the third generation fermions. We include also the corrections controlled by the tau Yukawa coupling that we derived for completeness. The computation is consistently performed in the DRbar renormalisation scheme. In a selected number of MSSM scenarios, we study the effect of these corrections and analyse the impact of some higher order effects. By considering the renormalisation scheme and scale dependence, and the effect of the approximation of zero external momentum in the two-loop corrections, we estimate the theoretical uncertainty on the lighter Higgs boson mass to be 3 to 5 GeV. The uncertainty on Mh due to the experimental error in the measurement of the SM input parameters is approximately of the same size. Finally, we discuss the phenomenological consequences, using the latest value of the top quark mass. We find, in particular, that the most conservative upper bound on the lighter Higgs boson mass in the general MSSM is Mh < 152 GeV and that there is no lower bound on the parameter tan(beta) from non-observation of the MSSM Higgs bosons at LEP2
    • 

    corecore